
 

1 

 

Assimilation of 3D Polarimetric Microphysical Retrievals in a 

Convective-Scale NWP System 

Lucas Reimann1, Clemens Simmer1, Silke Trömel1,2 

1
Department of Meteorology, Institute for Geoscience, University of Bonn, Bonn, 53121, 

Germany  5 

2
Laboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J, Bonn, 53121, 

Germany 

Correspondence to: Lucas Reimann (lreiman1@uni-bonn.de) 

 

Abstract. This study assimilates for the first time polarimetric C-band radar observations from 

the German meteorological service (DWD) into DWD’s convective-scale model ICON-D2 using 10 

DWD’s ensemble-based KENDA assimilation framework. We compare the assimilation of 

conventional observations (CNV) with the additional assimilation of radar reflectivity Z 

(CNV+Z), with the additional assimilation of liquid or ice water content (LWC or IWC) estimates 

below or above the melting layer instead of Z where available (CNV+LWC/Z or CNV+IWC/Z, 

respectively). Hourly quantitative precipitation forecasts (QPF) are evaluated for two stratiform 15 

and one convective rainfall event in the summers of 2017 and 2021.   

With optimized data assimilation settings (e.g., observation errors), the assimilation of LWC 

mostly improves first guess QPF compared to the assimilation of Z alone (CNV+Z), while the 

assimilation of IWC does not, especially for convective cases, probably because of the lower 

quality of the IWC retrieval in these situations. Improvements are, however, notable for 20 

stratiform rainfall in 2021, for which the IWC estimator profits from better specific differential 

phase estimates due to a higher radial radar resolution compared to the other cases. The 

assimilation of all radar data sets together (CNV+LWC+IWC+Z) yields the best first guesses.  

All assimilation configurations with radar information consistently improve deterministic nine-

hour QPF compared to the assimilation of only conventional data (CNV). Forecasts based on 25 

the assimilation of LWC and IWC retrievals on average slightly improve FSS and FBI compared 

to the assimilation of Z alone (CNV+Z), especially when LWC is assimilated for the 2017 

convective case and when IWC is assimilated for the high-resolution 2021 stratiform case. 

However, IWC assimilation again degrades forecast FSS for the convective cases. Forecasts 

initiated using all radar data sets together (CNV+LWC+IWC+Z) yield the best FSS. The 30 

development of IWC retrievals more adequat for convection constitutes one next step to further 

improve the exploitation of ice microphysical retrievals for radar data assimilation. 
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1 Introduction 

Heavy precipitation events can pose serious risks to the public and have increased in 

frequency and strength since the middle of the 20th century (IPCC, 2021). Thus, improving 35 

quantitative precipitation forecasts (QPF) is and remains of high societal interest. With the 

ever-increasing computing power of meteorological forecasting centers, the resolution of 

operational numerical weather prediction (NWP) models has increased up to the convective 

scale, allowing more accurate QPF. NWP requires model states close to the true atmospheric 

state (model initialization), which is usually achieved by combining short-term model forecasts 40 

(first guesses) and observational data statistically, taking into account their respective 

uncertainties, a process known as data assimilation (DA; e.g., Talagrand, 1997). Proper 

initialization at convective scales is challenging, because uncertainties in convective processes 

are difficult to estimate, and because of the observations required to resolve moist convective 

processes. Weather surveillance radars can provide such data with unique temporal and 45 

spatial resolution, and have become an indispensable data source for convective-scale NWP 

over the past decades.   

Radar observations have been successfully assimilated into convective scale NWP models, 

e.g. with 4D variational (4DVar; e.g., Lewis and Derber, 1985; Le Dimet and Talagrand, 1986) 

and 3D variational (3DVar; Courtier et al., 1998) DA methods (e.g., Sun and Crook, 1997, 50 

1998; Xiao et al., 2005). Over the past two decades, radar DA using the ensemble Kalman 

filter (EnKF; Evensen, 1994), a Monte Carlo approximation of the original Kalman filter 

(Kalman, 1960), has become increasingly popular particularly due to its ability to estimate the 

flow-dependent forecast uncertainty (the error covariance matrix) at the convective-scale 

through an ensemble of model forecasts (e.g., Snyder and Zhang, 2003; Tong and Xue, 2005; 55 

Aksoy et al., 2009; Dowell et al., 2011; Tanamachi et al., 2013; Wheatley et al., 2015; Bick et 

al., 2016; Gastaldo et al., 2021). However, running a forecast ensemble of sufficient size to 

robustly estimate the forecast error covariance matrix is not feasible in operational routines 

due to the connected high computational costs, which can lead to sampling errors that can 

cause filter divergence and spurious long-range correlations in the model domain (e.g., 60 

Houtekamer and Mitchell, 1998; Hamill et al., 2001). Observation localization (Ott et al., 2004), 

which limits the radius within which observations affect the analysis, is a common approach to 

mitigate this problem. The Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007), 

a manifestation of the EnKF in which observation localization is a key feature and which 

computes analyses at each grid point independently allowing for easy parallelization, is 65 

currently very popular in the DA community. In addition to being used for research purposes 

at the Japan Meteorological Agency (e.g., Miyoshi et al., 2010) and the European Centre for 

Medium-Range Weather Forecasts (e.g., Hamrud et al., 2015), the LETKF has been 

implemented operationally at the Italian Operational Centre for Meteorology (Bonavita et al., 
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2010) as well as at the German Meteorological Service (Deutscher Wetterdienst, DWD), and 70 

MeteoSwiss. Assimilation of 3D radar observations with the LETKF has shown positive effects 

on short-term QPF (e.g., Bick et al., 2016; Gastaldo et al., 2021); at DWD, 3D radar DA with 

the LETKF became operational for the convective-scale NWP model ICON-D2 (limited area 

setup of the Icosahedral Nonhydrostatic model over Germany; Zängl et al., 2015) in spring 

2021. 75 

Radar DA has mainly focused on the horizontal radar reflectivity factor (hereafter simply 

reflectivity) Z and the radial velocity V, with only Z providing direct information on cloud and 

precipitation microphysical processes. Dual-polarization (i.e., linear orthogonal polarization 

diversity; Seliga and Bringi, 1976, 1978; hereafter referred to as polarimetric) radar 

observations provide additional information on clouds and precipitation, such as the size, 80 

shape, orientation, and composition of hydrometeors (e.g., Zrnic and Ryzhkov, 1999). 

Therefore, polarimetric radar observations can help to improve the representation of cloud-

precipitation microphysics in NWP models, weather analyses, and consequently short-term 

QPF through model evaluation, parameterization developments, and DA (e.g., Kumjian, 2013; 

Zhang et al., 2019). Polarimetric radar observations have already been used to improve 85 

attenuation correction (e.g., Bringi et al., 1990; Testud et al., 2000; Snyder et al., 2010), 

quantitative precipitation estimation (e.g., Zrnic and Ryzhkov, 1996; Ryzhkov et al., 2005a; 

Tabary et al., 2011; Chen et al., 2021), severe weather observation and detection (e.g., 

Ryzhkov et al., 2005b; Bodine et al., 2013), hydrometeor classification (e.g., Park et al., 2009), 

and model evaluation (e.g., Jung et al., 2012; Putnam et al., 2014, 2017). However, exploitation 90 

of polarimetric information in DA is still in its infancy. One reason is the remaining uncertainties 

in the relationships between polarimetric radar moments and model microphysical state 

variables. Another reason is the lack of widespread operational polarimetric radar observations 

from national surveillance radar networks in the past. In recent years, many of these networks 

have been upgraded to polarimetry, e.g., in Germany, the USA, Canada, the UK, and China, 95 

providing a valuable new source of observational data for future operational NWP.  

Polarimetric moments can be linked to microphysical model state variables using either radar 

forward operators or retrieval algorithms. Radar forward operators compute synthetic radar 

moments based, e.g., on simulated parameterized particle size distributions, while retrievals 

estimate microphysical model state variables from radar observations prior to DA. The direct 100 

approach via forward operators is challenging because, e.g., hydrometeor shape, size, and 

orientation distributions, all of which affect (polarimetric) radar observations, are still rather 

rudimentarily represented in NWP models (e.g., Schinagl et al., 2019). The indirect approach 

via retrievals circumvents these model deficiencies, but suffers from retrieval uncertainties. A 

few case studies from the USA, Japan, and China have already attempted the direct DA of 105 

polarimetric observations with some success using the EnKF (e.g., Jung et al., 2008; Jung et 
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al., 2010; Putnam et al., 2019; Zhu et al., 2020; Putnam et al., 2021) or the 3DVar method 

(e.g., Li et al., 2017; Du et al., 2021). Other studies have assimilated polarimetric observations 

indirectly via retrieved hydrometeor mixing ratios using the 4DVar approach (e.g., Wu et al., 

2000), the 3DVar method (e.g., Li and Mecikalski, 2010, 2012), or the EnKF method (e.g., 110 

Yokota et al., 2016). Polarimetric data have also been used to modify cloud analysis schemes 

based on polarimetric signatures in storms (Carlin et al., 2017) or to improve hydrometeor 

classifications (Ding et al., 2022). To our knowledge, no study has yet assimilated polarimetric 

radar data in Central Europe. In preparation for the direct assimilation of polarimetric data, the 

single-polarization radar forward operator EMVORADO (Efficient Modular Volume Scanning 115 

Radar Forward Operator; Zeng et al., 2016), used operationally at DWD for the ICON-D2 

model, is currently being upgraded to polarimetric capabilities, but is still in a testing phase. 

Regarding indirect assimilation, polarimetric retrieval algorithms for liquid and ice water content 

(LWC and IWC) have been proposed in the literature (e.g., Ryzhkov et al., 1998; Bringi and 

Chandrasekar, 2001; Doviak and Zrnic, 2006; Carlin et al., 2016; Ryzhkov and Zrnic, 2019; 120 

Bukovcic et al., 2020; Carlin et al., 2021), but most of these algorithms were developed with a 

focus on S-band radars in the USA. The applicability of these retrieval relations for Germany 

with its C-band radar network and its quite different precipitation climatology may thus be 

limited. Recently, a hybrid polarimetric LWC estimator adapted to the German national C-band 

network has been developed by Reimann et al. (2021). 125 

The present paper takes a first step towards the indirect assimilation of polarimetric radar 

observations using microphysical retrievals of LWC and IWC in Germany and evaluates their 

impact on short-term QPF relative to the direct assimilation of Z observations. Polarimetric 

radar observations from the German national C-band weather radar network are assimilated 

into the DWD ICON-D2 model using the corresponding DA framework KENDA (Kilometre-130 

scale Ensemble Data Assimilation; Schraff et al., 2016) implementing the LETKF scheme. 

LWC and IWC data are estimated from the polarimetric measurements below and above the 

melting layer using the hybrid retrievals of Reimann et al. (2021) and Carlin et al. (2021), 

respectively. We attempt to identify suitable assimilation configurations for LWC and IWC 

based on first-guess QPF quality and provide first insights into how the indirect assimilation of 135 

polarimetric information affects short-term QPF up to nine hours lead time. The study focusses 

on three intense precipitation periods in the summers of 2017 and 2021 over Germany. 

The remainder of the paper is structured as follows. Section 2 briefly introduces the ICON-D2 

model and the KENDA DA framework. Section 3 describes the data used and the applied 

microphysical retrieval algorithms. Section 4 shows the experimental setup including the 140 

technique of assimilating the LWC and IWC retrievals and the experiment parts. Section 5 

presents the results of the experiments, and Sect. 6 presents the conclusions.   
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2 Forecast model and assimilation framework 

2.1   The ICON-D2 model 

The ICON (Icosahedral Nonhydrostatic) modelling framework (Zängl et al., 2015) is a global 145 

NWP and climate modelling system jointly developed by DWD and the Max Planck Institute 

for Meteorology in Hamburg, Germany, and became operational in DWD’s forecasting system 

in 2015. In this study, we perform integrations with the convection-resolving, area-limited setup 

of the ICON model, ICON-D2, covering Germany and parts of its neighboring states. The 

ICON-D2 model uses an unstructured triangular grid with a resolution of about 2.2 km 150 

horizontally and 65 vertical levels; the near-ground levels are terrain-following and the higher 

levels gradually shift to constant heights towards the model top. Lateral boundary conditions 

are provided by simulations of the ICON-EU model, a nesting setup of the global ICON model 

over Europe. The ICON-D2 model became operational at DWD recently, ousting the previously 

used COSMO (Consortium for Small-scale Modelling) model (Baldauf et al., 2011). 155 

The ICON-D2 model provides prognostic variables including the 3D wind velocity components 

and the virtual potential temperature. The total density of the air-water mixture and the 

individual mass fractions of dry air, water vapor, cloud water, cloud ice, rain, snow, and graupel 

are further prognostic variables, which are simulated in our study with the single-moment 

microphysics scheme representing a two-component system of dry air and water, which can 160 

occur in all three states of matter. 

2.2   The KENDA framework 

The KENDA system, originally developed for the COSMO model, is now operationally used for 

the ICON-D2 model at DWD and includes the LETKF scheme (see Appendix A or Hunt et al. 

(2007) for more details on the LETKF). KENDA employs one deterministic model run in 165 

addition to the current 40-member ensemble (40+1-mode), which is updated in the analysis 

using the Kalman gain for the ensemble mean 𝐊 as 

𝒙𝑎,𝑑𝑒𝑡 = 𝒙𝑏,𝑑𝑒𝑡 + 𝐊(𝒚𝑜 − 𝐻(𝒙𝑏,𝑑𝑒𝑡))        (1) 

with 𝒙𝑎,𝑑𝑒𝑡 and 𝒙𝑏,𝑑𝑒𝑡 the deterministic analysis and background, 𝒚𝑜 the observation vector, 

and 𝐻 a (non-linear) observation operator (Schraff et al., 2016). KENDA comprises various 170 

tools beneficial for ensemble-based DA. Among them are horizontal and vertical observation 

localization with a Gaspari-Cohn correlation function (Gaspari and Cohn, 1999) using 

individual length-scales to scale the inverse observation error covariance matrix. Moreover, 

KENDA allows for analysis calculations on a coarsened grid (Yang et al., 2009) to reduce the 

computational costs in the analysis step. 175 
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The indirect assimilation of Z observations started at DWD in 2007 with Latent Heat Nudging 

(LHN; Stephan et al., 2008; Milan et al., 2008), which modifies the thermodynamic model state 

during model forward integration using low-elevation Z observations. LHN is applicable to both 

the ensemble and the deterministic run in KENDA. Recently, the direct assimilation of 3D Z 

and V observations from the German C-band radar network (see Fig. 1) in combination with 180 

LHN became operational in the ICON-D2 routine at DWD.  

3 Data sets and microphysical retrievals 

Intense summer precipitation events can pose a serious risk to society in Central Europe and 

are particularly difficult to forecast (Olson et al., 1995). Thus, we focus on three intense 

summer precipitation events in Germany. The first event covers a 2-day period of heavy, 185 

mostly stratiform precipitation over western Germany and its neighboring states from 13 to 14 

July 2021, resulting from a slow-moving low-pressure system and causing devastating 

flooding, e.g., along the Ahr river in North Rhine-Westphalia (case S2021). The second event 

covers a 3-day period from 24 to 26 July 2017 characterized by widespread intense, mostly 

stratiform precipitation. It also caused flooding especially in Lower Saxony in central-northern 190 

Germany along the Bode River catchment (case S2017). The third event dominated by 

convective precipitation covers a 1.5-day period from midday on 19 to 20 July 2017 (case 

C2017). 

3.1   Radar observations 

DWD operates a network of 16 polarimetric C-band radars (blue circles in Fig. 1) and one 195 

additional non-polarimetric radar (red circle). In “volume-scan” mode, the network monitors 

data consisting of Plan Position Indicators (PPI) at 10 radar elevation angles between 0.5 and 

25 degrees with maximum slant ranges of about 180 km every five minutes. The data have a 

resolution of one kilometer in range, which increased to 0.25 km in March 2021, and one 

degree in azimuth; they are taken from the DWD archive.  200 

For the direct assimilation of 3D Z data employed in this study, we use pre-processed Z 

observations including quality assurance and attenuation correction. For the LWC/IWC 

estimation, we use the raw polarimetric moments Z (given in dBZ), differential reflectivity ZDR 

(given in dB), total differential phase PHIDP (given in degrees), and co-polar cross-correlation 

coefficient RHOHV. ZDR is the logarithmic ratio between the backscattered power at horizontal 205 

and vertical polarizations, which is close to 0 dB for isotropic scatterers and shows larger 

positive values for oblate particles and negative values for prolate particles. PHIDP is the lag 

in degrees of the horizontally polarized electromagnetic wave behind the vertically polarized 

one as the radar signal propagates through the atmosphere filled with anisotropic scatterers 

such as raindrops. Typically, half the range-derivative of PHIDP, the specific differential phase 210 

shift KDP (given in deg/km), is considered, which is positive for radar volumes filled with oblate 
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particles and is affected by the presence of liquid water. RHOHV is the cross-correlation 

coefficient between the horizontally and vertically polarized waves and is thus a measure of 

the diversity of scatterers in a radar volume. RHOHV decreases in the presence of pronounced 

diversity of hydrometeor shapes and in the presence of non-meteorological targets, making it 215 

a useful tool for radar data quality assurance.  

Kumjian (2013) notes that RHOHV can be as low as 0.85 for snow/ice and 0.95 for rain at S-

band. Here, we assume these values also for C-band. Thus, we only consider data 

below/above the melting layer for RHOHV > 0.95/0.85 with RHOHV corrected for noise before 

filtering (Ryzhkov and Zrnic, 2019). The height of the melting layer is determined from so-called 220 

Quasi-Vertical Profiles (i.e., azimuthal medians of PPIs measured at sufficiently high elevations 

and transferred to range-height displays; Trömel et al., 2014; Ryzhkov et al., 2016), as derived 

from PPIs measured at a 5.5 degree elevation angle, or from the nearest operational DWD 

radio sounding. KDP is estimated from the filtered and smoothed PHIDP following Vulpiani et 

al. (2012) with a fixed window size of nine kilometers. This window size is required due to the 225 

rather coarse radial resolution (one kilometer) for most of the PPIs considered to keep noise 

low and reduce potentially negative KDP estimates. The horizontal specific attenuation A 

(given in dB km-1) – the rate at which power is lost from the transmitted radar signal in horizontal 

polarization as it propagates through the precipitating atmosphere – is derived below the 

melting layer using the filtered and smoothed PHIDP and measured (attenuated) Z using the 230 

ZPHI method (Testud et al., 2000). In the retrieval algorithms, the attenuation parameter α 

(ratio between A and KDP, given in dB deg-1) is optimized for each ray using the self-

consistency method proposed by Bringi et al. (2001). Finally, the raw Z and ZDR data are 

corrected for (differential) attenuation using the optimized/climatological α values below/above 

the melting layer and the climatological value for the differential attenuation parameter β at C-235 

band 0.02 dB deg-1 (Ryzhkov and Zrnic, 2019). For more details on the polarimetric radar 

moments, see, e.g., Kumjian (2013).  

3.2   Hybrid liquid water content retrieval 

LWC is estimated from the polarimetric radar observations below the melting layer  following 

the hybrid retrieval proposed by Reimann et al. (2021) developed based on a large pure-rain 240 

disdrometer dataset and T-matrix scattering calculations at C-band. The estimator combines 

different polarimetric radar moments to optimally exploit and mitigate respective advantages 

and disadvantages known for different precipitation characteristics. For example, in weak 

precipitation indicated by small total PHIDP increments ΔPHIDP < 5 degrees below the melting 

layer, the LWC(Z,ZDR) relation is used (LWC always is in g m-3): 245 

log(𝐿𝑊𝐶(𝑍, 𝑍𝐷𝑅)) = 0.058𝑍 − 0.118𝑍𝐷𝑅 − 2.36.                                 (2a) 
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In such situations, KDP is potentially noisy due to noise in PHIDP and A potentially suffers 

from an unreliable ΔPHIDP estimation, while the influence of (differential) attenuation on Z and 

ZDR should be small for these rays. For stronger rain – rays with ΔPHIDP > 5 degrees – the 

negative influence of (differential) attenuation on Z and ZDR increases, while less noise and 250 

uncertainty is expected in KDP and A; therefore, LWC(A) and LWC(KDP) estimators are used.  

The LWC(A) estimator 

log(𝐿𝑊𝐶(𝐴)) =  −0.1415 log(𝐴)2 + 0.209log(𝐴) + 0.46,      (2b) 

is used for radar bins with Z < 45 dBZ, when hail is unlikely, and the LWC(KDP) estimator  

log(𝐿𝑊𝐶(𝐾𝐷𝑃)) = 0.568log(𝐾𝐷𝑃) + 0.06,        (2c) 255 

is used for bins with Z > 45 dBZ, since KDP is less affected by hail than A. It should be noted, 

however, that the hybrid LWC estimator is likely unsuitable in the presence of hail and graupel, 

especially in certain convective situations, due to its derivation from pure-rain observations.  

3.3   Hybrid ice water content retrieval 

IWC is estimated above the melting using the hybrid estimator proposed by Carlin et al. (2021). 260 

It combines the relations based on ZDR and KDP (Ryzhkov and Zrnic, 2019) 

𝐼𝑊𝐶(𝑧𝐷𝑅, 𝐾𝐷𝑃) = 4.0 ∗ 10−3 𝐾𝐷𝑃𝜆

1−𝑧𝐷𝑅−1        (3a) 

with the one based on Z and KDP (Bukovcic et al. 2018, 2020) 

𝐼𝑊𝐶(𝑧, 𝐾𝐷𝑃) = 3.3 ∗ 10−2(𝐾𝐷𝑃𝜆)0.67𝑧0.33       (3b) 

with z and zDR are Z and ZDR given in linear units (mm6 m-3 and unitless), IWC in g m-3, and 265 

the radar wavelength λ set to 53 mm (C-band). The estimators in Eq. (3) are again combined 

to complement their individual strengths: Eq. (3a) is fairly immune to orientation and shape of 

snowflakes, but sensitive to variations in ice density and prone to errors from ZDR biases 

especially at low ZDR values; Eq. (3b) is immune to ZDR miscalibration, but sensitive to 

hydrometeor aspect ratio, orientation, and density. Eq. (3a) is used for ZDR > 0.4 dB and 270 

Eq. (3b) otherwise. Recently, Blanke et al. (2023) demonstrated the high accuracy of this 

hybrid estimator (correlation coefficient and root-mean-square deviation 0.96 and 0.19 g m-3, 

respectively) in an evaluation study with in-situ airplane observations on the west coast of the 

USA. It should be noted, however, that both parts of the hybrid IWC estimator in Eq. (3) are 

adapted to snowfall, with their derivation based on an inversely proportional relationship 275 

between particle density and diameter, which usually does not hold for hail and graupel. 

Therefore, its applicability to hail/graupel convective situations in particular may be limited.  
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4 Setup of assimilation experiments 

4.1   Retrieval resolution 

The retrieved LWC and IWC values with the resolution corresponding to the measured radar 280 

data are subjected to “superobbing” (see an example in Fig. 2), which is also applied to the Z 

data in KENDA. Superobbing reduces the resolution of the radar data to approximately match 

the resolution of the analysis grid by spatial and elevation-wise averaging in the linear scale to 

a Cartesian grid with a resolution (LC in km) corresponding to the analysis grid (10 km for an 

analysis grid coarsening factor of three currently used in KENDA). The number of radar bins 285 

contributing to the averaging decreases with increasing distance from the radar, and the 

window size for the averaging (LS in km) is equal to LC in KENDA, but is modified in our study 

while keeping LC constant. The minimum number of valid values in the superobbing window 

to perform superobbing (MV) is three observations, as used for the 3D Z DA in KENDA. Further 

details on the superobbing procedure can be found in Bick et al. (2016). 290 

The LWC and IWC estimates are assimilated with a lower limit (LL) similar to the “no-

precipitation” threshold of 0 dBZ used for the Z assimilation in KENDA. In contrast to Z, the 

LWC and IWC data in no-precipitation are mostly filtered out by the applied RHOHV thresholds, 

but such a lower data threshold can still be useful to limit the variability in the microphysical 

estimates and thus can also be used for tuning (personal communication with Ulrich Blahak, 295 

DWD). We choose LL = -2.3 for log(LWC), which approximately corresponds to 0 dBZ for Z 

when comparing measured log(LWC) and synthetic Z data obtained from T-matrix scattering 

calculations for a large German pure-rain disdrometer data set (not shown). The rare 

occurrence of snow on the ground in Germany and instrumental limitations prevent a similar 

analysis for IWC. Therefore, we also use -2.3 for log(IWC). 300 

Analogous to the assimilation of 3D Z data in KENDA, only the PPIs at radar elevation angles 

of 1.5, 3.5, 5.5, 8.0, and 12.0 degrees are used for LWC and IWC, and data from altitudes 

below 600 and above 9,000 m are not considered. The superobbed microphysical estimates 

are assimilated in the logarithmic scale, similar to the Z data in KENDA, which leads to better 

results (not shown). 305 

4.2   Assimilation settings and first guess 

Z is currently assimilated in KENDA with a fixed observation error standard deviation (OE) of 

10 dBZ. We use a fixed value of OE = 0.5, which can be obtained statistically from the 

disdrometer data considered above: a difference Δlog(LWC) = 0.5 covers a similar fraction of 

the full range of data as ΔZ = 10 dBZ (not shown). This value is also used for log(IWC). The 310 

horizontal observation localization length-scale (LH) and the vertical observation localization 
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length-scale (LV) are set to 16 km and to increase with height from 0.075 to 0.5 in logarithm of 

pressure (ln(p)) as used for the 3D Z DA in KENDA.  

First guesses of LWC and IWC are calculated with a simple “forward operator”, which uses the 

prognostic model variables total air density (𝜌𝑡𝑜𝑡, given in kg m-3) and the rain and cloud water 315 

mixing ratios 𝑞𝑟 and 𝑞𝑐 for LWC, and the snow, graupel, and cloud ice mixing ratios 𝑞𝑠, 𝑞𝑔, and 

𝑞𝑖 (all given in g m-3) for IWC at the model grid points via 

𝐿𝑊𝐶 =  103𝜌𝑡𝑜𝑡(𝑞𝑟 + 𝑞𝑐)         (4a) 

and 

𝐼𝑊𝐶 =  103𝜌𝑡𝑜𝑡(𝑞𝑠 + 𝑞𝑔 + 𝑞𝑖).         (4b) 320 

The first-guess LWCs and IWCs are then projected with the nearest-neighbor method onto the 

polar (PPI) grid of the observed LWC and IWC data and superobbed analogously to the 

observed data. This procedure is done for the ensemble and the deterministic run.  

4.3   Model initialization and lateral boundary data 

ICON-D2 model data in 40+1-mode for our evaluation periods are provided by DWD for 22 325 

UTC 12 July 2021, 00 UTC 23 July, and 00 UTC 18 July 2017. These data are output from the 

regular ICON-D2 routine and thus do not require further “spin-up” integrations prior to our 

assimilation experiments. Hourly assimilation cycles such as in the operational routine 

including DA of conventional (e.g., surface station, radio sounding, and aircraft data) and 3D 

radar observations, and including LHN, are performed to obtain model states for the initial 330 

times of the experiment periods 00 UTC 13 July 2021, 00 UTC 24 July 2017, and 11 UTC 19 

July 2017. ICON-EU model data provided by DWD are used as lateral boundary conditions.   

4.4   Experiment part A: assimilation configurations 

From the model initial times, 3D LWC and IWC estimates are assimilated in hourly assimilation 

cycles instead of 3D Z data, where available, to avoid potential problems arising from 335 

assimilating the information from the Z data twice. Thus, Z data is always assimilated within 

the melting layer and in precipitation-free areas, where the LWC and IWC estimates are not 

available due to the applied RHOHV thresholds. We exclude the assimilation of 3D V 

observations and LHN to focus on the assimilation of microphysical information from the radar 

network. We assimilate the LWC and IWC estimates separately to study their individual impact 340 

on weather forecasts, but also to identify individual best DA parameter (DAP; LH, LV, OE, LS, 

LL, and MV) sets. The DA configurations assimilating LWC and IWC also assimilate 

conventional observations and are therefore referred to as CNV+LWC/Z and CNV+IWC/Z. The 

DA of only conventional observations and the DA of conventional and 3D Z observations are 

used as reference configurations CNV and CNV+Z, respectively.  345 
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We consider a near-random sample of DAP settings generated via Latin Hypercube Sampling 

(LHS) by modifying the DAP values from their pre-selected values (pre-selected and modified 

values in Table 1; generated settings S1-01 to S1-12 in Table 2). The results of using the DAP 

configurations/values are compared with each other in terms of first-guess deterministic and 

ensemble QPF quality via a single univariate measure – the joint quality score (JQS) 350 

𝐽𝑄𝑆𝑐/𝑣 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑤(𝛥CNV+Z𝐹𝑆𝑆𝑛𝑜𝑟𝑚[CNV+X/Z])  

+𝑚𝑒𝑑𝑖𝑎𝑛𝑤(𝛥CNV+Z𝐵𝑆𝑆𝑛𝑜𝑟𝑚[CNV+X/Z]).     (5) 

In Eq. (5), FSS is the deterministic Fraction Skill Score (Roberts and Lean 2008; more details 

in Appendix B), BSS is the Brier Skill Score (following Wilks 2019; see Appendix C) quantifying 

the ensemble forecast quality, and both quantities are calculated using DWD’s RADOLAN 355 

(Radar-Online-Aneichung) product (https://opendata.dwd.de/climate_environment/CDC 

/grids_germany/hourly/radolan/historical/bin/) as verification data; ΔCNV+Z denotes differences 

with respect to the CNV+Z configuration; X is LWC or IWC; index “norm” denotes normalization 

with the means of ΔCNV+ZFSS[CNV+Z] or ΔCNV+ZBSS[CNV+Z]; medianw(…) denotes the 

weighted median. Medians are used instead of means in order to reduce the impact of outliers 360 

in FSS and BSS, and weights are determined by the fractions of threshold exceedances for a 

given time and threshold of the total number of exceedances at all thresholds (0.5, 1.0, 2.0, 

and 4.0 mm h-1) and events (C2017, S2017, and S2021) in the RADOLAN data (see Fig. 3). 

We use weighted medians over all cases and thresholds to compare QPF quality between 

different DAP configurations (JQSc) and additionally calculate weighted medians over all DAP 365 

settings that have the same DAP values to compare individual DAP values (JQSv).  

In addition to optimizing DAP sets, we also aim to optimally combine the radar data sets 

considered (i.e., Z, LWC, and IWC). Therefore, also the parallel assimilation of LWC or IWC 

and Z (configurations CNV+LWC+Z or CNV+IWC+Z, respectively), the combined assimilation 

of LWC and IWC estimates as alternatives to Z (configuration CNV+[LWC+IWC]/Z) or in 370 

parallel to Z (CNV+LWC+IWC+Z) are also evaluated with JQSc. 

4.5   Experiment part B: nine-hour forecasts 

Finally, the impact of assimilating the 3D microphysical estimates with KENDA on forecasts 

with lead times greater than one hour is evaluated. The 3D LWC and IWC estimates are 

assimilated with the identified best DAP sets and radar data set configurations in hourly 375 

assimilation cycles, as before, and then nine-hour deterministic forecasts of the ICON-D2 

model are initiated every third hour from the produced analyses. The quality of the deterministic 

nine-hour QPF is assessed using the FSS and the Frequency Bias (FBI; more details in 

Appendix D). Probabilistic forecasts are not considered due to data storage limitations. 
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5 Numerical results 380 

5.1   Experiment part A: assimilation configurations 

The CNV+LWC/Z configuration yields different first-guess FSS and BSS values for the different 

DAP settings (see Table 2) and precipitation cases (Fig. 4a, c). Improvements over the 

assimilation of Z data alone (CNV+Z) considering all cases together are obtained, e.g., with 

the DAP sets S1-01 to S1-03, or S1-06 (Fig. 4a4, c4). These best-performing sets all have 385 

rather small horizontal observation localizations LH of 8 and 16 km and rather high lower limits 

LL of -1.15 and -2.30 (see Table 2), which may be due to discrepancies between true and 

model microphysics. Similarly, the IWC assimilation instead of Z where available (CNV+IWC/Z) 

also yields different first-guess FSS and BSS values for different DAP sets (Table 2) and 

precipitation cases (Fig. 4b, d). Improvements over the CNV+Z configuration are mostly limited 390 

to the 2021 stratiform case, e.g., for the DAP settings S1-02 or S1-05 (Fig. 4b3, d3), while first-

guess QPF is mostly degraded for the 2017 convective case (Fig. 4b1, d1). 

The univariate measure JQSv (see Sect. 4.4 and Eq. (5)), which uses the first-guess FSS and 

BSS values, is used to find the best DAP settings for LWC and IWC. The DAP values 

LH = 32 km, LV = 0.5 ln(p), OE = 0.5, LS = 5 km, LL = -4.6, and MV = 25 % (i.e., 25 % of the 395 

radar pixels in the superobbing window must have valid values) give the worst (and negative) 

JQSv values for both LWC and IWC (blue and orange bars in Fig. 5a). Another 10 DAP sets in 

the vicinity of the better performing ones are sampled with LHS (S2-01 through S2-10 in 

Table 2). Further improvements over the assimilation of Z alone (CNV+Z) are obtained for the 

LWC assimilation (Fig. 4e, g), but are mostly only obtained for the 2021 stratiform case for the 400 

IWC assimilation (Fig. 4f3, h3). The new DAP settings (Table 2; Fig. 4e-h) do, however, on 

average not perform significantly better compared to the first sample (Table 2; Fig. 4a-d), 

except that strong negative outliers (e.g., S1-09 in Fig. 4a-d) do not appear anymore.   

The 22 DAP settings (Table 2) for the LWC and IWC assimilations are compared to each other 

in terms of first-guess deterministic and ensemble QPF quality using the univariate measure 405 

JQSc (see Sect. 4.4 and Eq. (5)). Several DAP settings for the LWC assimilation yield positive 

JQSc values (black bars in Fig. 5b) and thus improved first-guess FSS and BSS values 

compared to the assimilation of Z alone (CNV+Z), while for the IWC assimilation, positive JQSc 

values are limited to the 2021 stratiform case (red bars in Fig. 5e). The DAP set S2-06 

(LH = 8 km, LV = 0.2 ln(p), OE = 0.25, LS = 20 km, LL = -1.15, and MV = 3, see Table 2) for 410 

LWC yields overall the best JQSc (black bars Fig. 5b), while setting S1-02 (LH = 8 km, 

LV = 0.5 ln(p), OE = 0.25, LS = 10 km, LL = -1.15, and MV = 50 %, see Table 2) results in the 

best (but rather neutral) JQSc value for IWC (red bars in Fig. 5b).  
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The assimilation of LWC instead of Z data where possible (CNV+LWC/Z) with the respective 

best DAP setting improves first guess QPF for the 2017 precipitation cases (Fig. 4e1, e2, 415 

g1, g2 and black bars in Fig. 5c, d) compared to the assimilation of Z data alone (CNV+Z) while 

QPF quality is degraded for the stratiform S2021 case (Fig. 4e3, g3 and black bars in Fig. 5e). 

As expected, the time series of the first-guess FSS and BSS values at a threshold of 0.5 mm h-1 

show slight, systematic improvements for the 2017 cases for some time intervals (green colors 

in Fig. 6a, c, e, g), but more pronounced degradations for the 2021 case (Fig. 6i, k). The 420 

assimilation of IWC (CNV+IWC/Z) with the respective best DAP set yields improvements over 

the CNV+Z configuration particularly for the stratiform S2021 case (Fig. 4b3, d3 and red bars 

in Fig. 5e), but clear quality decreases for the convective C2017 case (Fig. 4b1, d1 and red 

bars in Fig. 5c). Time series of first-guess FSS and BSS values at a 0.5 mm h-1 threshold 

confirm this finding: slight, systematic improvements are evident for the 2021 case in some 425 

time periods (Fig. 6j, l), while degradations are visible for the 2017 convective case (Fig. 6b, d). 

The better performance of the IWC assimilation for the 2021 stratiform case may be due the 

higher radial resolution of the more recent radar data of DWD (recall that the resolution was 

increased from one kilometer to 0.25 km in spring 2021), which leads to better KDP estimates, 

because many more consecutive radar bins are considered for the nine-kilometer KDP-430 

estimation window used. Using the same window length for the lower-resolution data for the 

2017 cases means using only one quarter of the data compared to the 2021 case. Estimating 

KDP from only nine consecutive values may favor negative KDP estimates resulting in 

negative IWC values, which are set to the lower limit (LL) value in the superobbing procedure 

and are thus treated as “no-precipitation”. The replacement of negative IWC estimates with 435 

zero or with the IWC(Z) retrievals following Atlas et al. (1995) led to some improvements, but 

the first-guess QPF quality remained below the CNV+Z configuration (not shown). 

Parallel assimilation of LWC and Z (CNV+LWC+Z), i.e., assimilation of LWC and Z at the same 

superobbing points, reduces the JQSc values compared to the alternative assimilation strategy 

(CNV+LWC/Z), but is still better than the assimilation of Z only (CNV+Z; lower black bars in 440 

Fig. 7). In contrast, the parallel assimilation of IWC and Z (CNV+IWC+Z) improves JQSc values 

compared to the alternative assimilation strategy (CNV+IWC/Z; middle black bars in Fig. 7) 

above the CNV+Z quality. Assimilation of all radar data sets in parallel (CNV+LWC+IWC+Z) 

gives the best JQSc value (upper black bar in Fig. 7b).   

The impact of the LWC and IWC assimilation on the first-guess of temperature, relative 445 

humidity, and u-wind speed is investigated using conventional observations. The assimilation 

of radar information generally reduces standard deviations (SD) compared to the assimilation 

of only conventional data (CNV+Z, CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z 

configurations correspond to black, red, yellow, and blue curves in Fig. 8b, e, h), while the 

impact on mean bias deviations (MBD) is less clear (compare black solid, red, yellow, and blue 450 
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curves with black dotted curves in Fig. 8c, f, i). The CNV+LWC/Z, CNV+IWC/Z, and 

CNV+LWC+IWC+Z configurations result in SDs and MBDs similar to the assimilation of Z 

alone (CNV+Z), but slight, systematic SD improvements are evident for the u-wind speed with 

the CNV+IWC/Z configuration (yellow curve in Fig. 8h). 

5.2   Experiment part B: nine-hour forecasts 455 

With the best performing DAP sets for the LWC and IWC assimilations, up to nine-hour 

forecasts are performed. Z observations (CNV+Z) clearly improve the deterministic FSS for a 

threshold of 0.5 mm h-1 for all forecast hours compared to the assimilation of only conventional 

data (CNV) on average for all cases (compare black with grey lines in Fig. 9a, d, g, j). This also 

holds for the deterministic FBI for the stratiform S2017 and S2021 cases, while for the 460 

convective C2017 case the underestimation is enhanced (compare black and grey curves in 

Fig. 9c, f, i, l). Assimilating LWC estimates instead of Z data where possible (CNV+LWC/Z) 

slightly further improves the FSS on average over all cases for most of the forecast time (red 

curve above the zero line in Fig. 9b). This overall positive impact results from the first six hours 

of the convective C2017 case and forecast hours five to nine of the stratiform 2021 case 465 

(Fig. 9e, k). FBI improvements are achieved for up to seven hours lead time (compare red with 

black curves in Fig. 9c) and at least for the first four hours lead time for all individual cases 

(compare red curves with grey and black curves in Fig. 9f, i, l).  

The assimilation of IWC instead of Z where possible (CNV+IWC/Z) only marginally improves 

the FSS on average for the first five hours lead time (yellow curves in Fig. 9b) compared to the 470 

CNV+Z configuration. As expected from the first-guess analysis, the mean FSS for the 

convective C2017 case is mostly degraded (yellow curve in Fig. 9e) and the stratiform S2017 

and S2021 cases are improved (yellow curves in Fig. 9h, k). For the S2021 case, the mean 

forecast FSS values are slightly improved for most of the forecast time (yellow curve mostly 

above zero line in Fig. 9k). Qualitatively similar results result for the FBI on average over all 475 

cases, which shows the best results for the first four forecast hours (compare yellow with the 

remaining curves in Fig. 9c). 

The on average best FSS for the first six forecast hours are obtained, when all radar data sets 

are assimilated together (CNV+LWC+IWC+Z; blue curve in Fig. 9b); however, the good results 

for the FBI with the assimilation of IWC (CNV+IWC/Z) are not reached (compare blue and 480 

yellow curves in Fig. 9c), but the FBI is improved up to seven forecast hours compared to the 

CNV+Z configuration (black curve). 

As expected, the SDs of 2m temperature, 2m relative humidity, and 10m u-wind speed 

generally increase with forecast lead time for all DA configurations (CNV, CNV+Z, 

CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z  drawn as grey, black, red, yellow, and 485 

blue curves, respectively, in Fig. 10). The assimilation of radar information always reduces the 
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SDs. Interestingly, the assimilation of IWC yields the lowest SD for humidity (yellow curve in 

Fig. 10c) and wind (Fig. 10e) and is only marginally outperformed by the assimilation of all 

radar information in parallel (CNV+LWC+IWC+Z) for 2m temperature (compared yellow with 

blue curve in Fig. 10a). The bias (MBD), however, is only reduced for the near-surface wind 490 

(Fig. 10f), while the absolute MBD generally increases due to the assimilation of radar data – 

except for the near-surface humidity, which achieves its lowest values when all radar 

information is assimilated in parallel (CNV+LWC+IWC+Z; blue curve in Fig. 10d).  

6 Conclusions 

We assimilated for the first time polarimetric information from radar observations of the German 495 

C-band radar network in the KENDA-ICON-D2 system of DWD. In this study, we used 

microphysical retrievals of liquid and ice water content (LWC and IWC) and evaluated their 

impact on short-term precipitation forecasts. First, the impact of assimilating the microphysical 

retrievals on the first-guess (hourly) precipitation forecasts was investigated with different data 

assimilation parameter (DAP; e.g., observation localization length-scales and errors) sets and 500 

radar data set configurations. Then, the most successful assimilation settings were used to 

initiate nine-hour precipitation forecasts.   

Four data set configurations were analyzed for finding the best DAP sets: only conventional 

observations (CNV), conventional and 3D reflectivity Z observations (CNV+Z), conventional 

data and 3D LWC estimates replacing Z observations where available (CNV+LWC/Z), and 505 

conventional data and 3D IWC estimates replacing Z observations where possible 

(CNV+IWC/Z). For the two stratiform cases in the summers of 2017 and 2021 and the one 

convective case in the summer of 2017, a rather small horizontal observation localization 

length-scale of 8 km and a lower limit of -1.15 in log(LWC) and log(IWC) yielded the best 

deterministic and ensemble first-guesses. Thus, best precipitation forecasts are achieved 510 

when the influence of the observed microphysical estimates on the model state is rather small, 

possibly due to discrepancies between model and true microphysics. A rather small 

observation error standard deviation of 0.25 in log(LWC) and log(IWC) was most successful. 

The best values for the other DAPs differed for LWC and IWC: vertical localization length-

scales were 0.2 in logarithm of pressure for LWC and 0.5 in logarithm of pressure for IWC; 515 

best superobbing window sizes were 20 km for LWC and 10 km for IWC; the minimum number 

of valid values in the superobbing window was three observations for LWC and 50 % valid 

values for IWC.  

The LWC assimilation with the best performing DAP setting improved the first-guesses for 

most precipitation cases and accumulation thresholds compared to the assimilation of Z alone 520 

(CNV+Z), while the best-performing DAP setting for IWC deteriorated the results, especially 

for the 2017 convective case, except for the stratiform case in 2021. The latter may be due to 
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the radial resolution increase in the DWD volume scans from one kilometer to 0.25 km in spring 

2021. The higher resolution improves the specific differential phase KDP estimation as part of 

the hybrid IWC retrieval, because more successive radar bins can be used for a given KDP 525 

window size. One reason for the poor performance of the IWC assimilation especially for the 

2017 convective case, besides possible deficiencies in the model’s ice module, may be the 

fact that the IWC retrieval was adjusted for snowfall but not for hail or graupel likely being 

present during intense convective summer precipitation in Germany. Interestingly, the LWC 

assimilation led to consistent improvements for convective situations, despite a retrieval not 530 

adapted to hail or graupel either. The application of a higher co-polar cross-correlation 

coefficient RHOHV threshold below the melting layer for filtering may have masked radar pixels 

contaminated with hail or graupel.  

In general, the best first-guess precipitation forecasts were obtained when all radar data sets 

(i.e., Z, LWC, and IWC) were assimilated together (CNV+LWC+IWC+Z).  535 

Nine-hour forecasts initiated with the CNV+LWC/Z configuration using the best DAP setting 

slightly outperformed the assimilation of Z data alone (CNV+Z) in terms of deterministic 

Fraction Skill Score FSS on average and for most forecast lead times with the best results for 

the 2017 convective case. The same applies to the assimilation of IWC (CNV+IWC/Z), 

however, the mean FSS mostly deteriorated for the convective case compared to the CNV+Z 540 

configuration, but was systematically improved over most of the forecast time for the high-

resolution 2021 stratiform case. Forecasts initiated with the assimilation of all radar data sets 

(CNV+LWC+IWC+Z) yielded the best overall FSS. Furthermore, the assimilation of the LWC 

and/or IWC estimates (CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z) generally 

improved the mean frequency bias FBI over the assimilation of Z alone (CNV+Z) for most 545 

forecast hours. 

We used DWD’s standard configuration of KENDA, which only produces microphysical 

analysis increments in cloud water mixing ratio and specific humidity, i.e., not all available 

hydrometeor species (e.g., rain, cloud ice, and graupel mixing ratios) are updated individually. 

This setting was chosen at DWD to optimize the assimilation impact of Z (personal 550 

communication with Klaus Stephan, DWD). Thus, it remains to be explored how changes in 

the updated (microphysical) variables change precipitation forecasts when polarimetric 

information contained in microphysical retrievals is assimilated. For example, it should be 

investigated if the update of the rain mixing ratio via cross-correlations in the first-guess 

ensemble from LWC observation increments or the update of ice species (e.g., snow and/or 555 

cloud-ice mixing ratios) via cross-correlations from IWC innovations would yield improved 

forecasts.  
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Our study presented the benefits from the assimilation of state-of-the-art polarimetric 

microphysical retrievals below and above the melting layer adjusted for pure rain and snowfall, 

respectively, in a convective-scale NWP system in Germany. The results revealed only limited 560 

benefits with the assimilation of IWC retrievals in convective precipitation. Since the retrievals 

are based on assumptions valid for snow but not for graupel or hail, such as e.g. the inversely 

proportional relationship between density and size of hydrometeors, the potential presence of 

graupel and/or hail in convection may be at least partly responsible. Accordingly, the 

development of more adequate retrieval algorithms for convective cores constitutes one of the 565 

next steps to further improve the exploitation of ice microphysical retrievals for radar data 

assimilation. 

 

Appendices 

Appendix A: Local Ensemble Transform Kalman Filter  

The Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007) uses an ensemble of 570 

background model states each of dimension N 

{𝒙𝑘
𝑏,𝑚: 𝑚 = 1, 2, … , 𝑀} (A1) 

at time 𝑡𝑘, with M the ensemble size, resulting from the forward integration of an ensemble of 

analyses 

{𝒙𝑘−1
𝑎,𝑚 : 𝑚 = 1, 2, … , 𝑀} (A2) 575 

at time 𝑡𝑘−1. In the following formulations we refer to time step 𝑡𝑘 and drop the time index for 

simplicity. The mean and covariance matrix associated with the background ensemble are 

given by 

𝒙̅𝑏 = 𝑀−1 ∑ 𝒙𝑏,𝑚𝑀
𝑚=0   (A3) 

and 580 

𝐏b = (𝑀 − 1)−1𝐗b(𝐗b)𝑇, (A4) 

with 𝐗b a 𝑁 × 𝑀-matrix the columns of which are the perturbations of the individual background 

ensemble members from the respective background ensemble mean as 

𝐗b =  [
𝑥𝑏,𝑛=0,𝑚=0, − 𝑥

𝑏,𝑛=0
⋯ 𝑥𝑏,𝑛=0,𝑚=𝑀 − 𝑥

𝑏,𝑛=0

⋮ ⋱ ⋮

𝑥𝑏,𝑛=𝑁,𝑚=0 − 𝑥
𝑏,𝑛=𝑁

⋯ 𝑥𝑏,𝑛=𝑁,𝑚=𝑀 − 𝑥
𝑏,𝑛=𝑁

]. (A5) 

In the LETKF analysis, an ensemble of analyses such as in Eq. (A2) is constructed at time 𝑡𝑘 585 

such that the associated ensemble mean and covariance matrix are given by 

https://doi.org/10.5194/egusphere-2023-1132
Preprint. Discussion started: 19 June 2023
c© Author(s) 2023. CC BY 4.0 License.



 

18 

 

𝒙̅𝑎 = 𝑀−1 ∑ 𝒙𝑎,𝑚𝑀
𝑚=0  (A6) 

and  

𝐏a = (𝑀 − 1)−1𝐗a(𝐗a)𝑇, (A7) 

with the columns of the 𝑁 × 𝑀-matrix 𝐗a, like 𝐗b, the perturbations of the individual analysis 590 

ensemble members from their respective analysis ensemble mean. The analysis increment is 

determined in the M-dimensional subspace spanned by the background ensemble 

perturbations or columns of 𝐗b by minimizing the cost function 

𝐽(𝒘) = (𝑀 − 1)𝒘𝑇𝒘 + (𝒚𝑜 − 𝐻(𝒙̅𝑏 + 𝐗b𝒘))
𝑇

𝐑−1(𝒚𝑜 − 𝐻(𝒙̅𝑏 + 𝐗b𝒘)). (A8) 

Here, the vector 𝒘 ∈ 𝑅𝑀 determines a model state 𝒙 through a linear combination of the 595 

background ensemble perturbations via 

𝒙 = 𝒙̅𝑏 + 𝐗b𝒘. (A9) 

𝒚𝑜 in Eq. (A8) denotes the P-dimensional observation vector, the 𝑃 × 𝑃-matrix 𝐑 is the 

corresponding covariance matrix, and 𝐻 is the observation operator. In the LETKF, 𝐻 is 

linearized about the background ensemble mean as 600 

𝐻(𝒙̅𝑏 + 𝑿𝑏𝒘) ≈ 𝒚̅𝑏 + 𝐘b𝒘 (A10) 

with 𝒚̅𝑏 the ensemble mean of the background ensemble in observation space and 𝐘b the 

corresponding 𝑃 × 𝑀-matrix of observation-background ensemble perturbations. Applying the 

linearization in the cost function formulation in Eq. (A8) yields 

𝐽∗(𝒘) = (𝑀 − 1)𝒘𝑇𝒘 + (𝒚𝑜 − 𝒚̅𝑏 + 𝐘b𝒘)
𝑇

𝐑−1(𝒚𝑜 − 𝒚̅𝑏 + 𝐘b𝒘), (A11) 605 

and the minimum of 𝐽∗ can be explicitly calculated due to its formulation in the low-dimensional 

ensemble space. We yield the mean and covariance matrix in ensemble space 

𝒘̅𝑎 = 𝐏̃a(𝐘b)
T

𝐑−1(𝒚𝑜 − 𝒚̅𝑏)  (A12) 

and 

𝐏̃a = ((𝑀 − 1)𝐈 + (𝐘b)T𝐑−1𝐘b)−1, (A13) 610 

and the corresponding mean and covariance matrix in the full N-dimensional model space 

𝒙̅𝑎 = 𝒙̅𝑏 + 𝐗𝑏𝒘̅𝑎 = 𝒙̅𝑏 + 𝐗b𝐏̃a(𝐘b)
T

𝐑−1(𝒚𝑜 − 𝒚̅𝑏) (A14) 

and 

𝐏a = 𝐗b𝐏̃a(𝐗b)T. (A15) 
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Thus, the analysis ensemble mean 𝒙̅𝑎 is calculated by adding to the background ensemble 615 

mean 𝐱̅𝑏 the innovation or observation increment 𝒚𝑜 − 𝒚̅𝑏 weighted by the Kalman gain 𝐊 =

𝐗b𝐏̃a(𝐘b)
T

𝐑−1. The individual analysis ensemble members are determined using a symmetric 

square root 

𝐗a = 𝐗b𝐖a (A16) 

with 620 

𝐖a = ((𝑀 − 1)𝐏̃a)1/2 (A17) 

such that 

𝒙𝑎,𝑚 = 𝒙̅𝑏 + 𝐗b(𝒘̅𝑎 + 𝐖m
a ) (A18) 

with 𝑾𝑚
𝑎  the m-th column of 𝐖a.  

Appendix B: Fraction Skill Score (FSS) 625 

The Fraction Skill Score (FSS; Roberts and Lean, 2008) is calculated via projection of the 

forecasted and observed precipitation accumulations onto the verification grid (the RADOLAN 

grid reduced to three kilometers to better fit the model data of about 2.2 km horizontal 

resolution). The RADOLAN data are averaged over nine grid points, while the model data are 

selected by the nearest-neighbor method. The projected fields of observations 𝑃𝑂 and model 630 

first-guess 𝑃𝑀 are converted to binary fields 𝐼𝑂 and 𝐼𝑀 for the chosen precipitation accumulation 

thresholds 𝑞 

𝐼𝑂,(𝑞) = {
1    𝑓𝑜𝑟 𝑃𝑂 ≥ 𝑞
 0   𝑓𝑜𝑟 𝑃𝑂 < 𝑞

   (B1) 

and 

𝐼𝑀,(𝑞) = {
1   𝑓𝑜𝑟 𝑃𝑀 ≥ 𝑞
0   𝑓𝑜𝑟 𝑃𝑀 < 𝑞

.  (B2) 635 

Fractions of surrounding points within squares of 𝑛 × 𝑛 data points in the binary fields 𝐼𝑂,(𝑞) 

and 𝐼𝑀,(𝑞), 𝐹𝑂,(𝑛,𝑞)and 𝐹𝑀,(𝑛,𝑞), that have a value of one are calculated for each verification grid 

point. Finally, the FSS for a window size n and precipitation threshold q is computed as 

𝐹𝑆𝑆(𝑛,𝑞) = 1 −
𝑀𝑆𝐷(𝑛,𝑞)

𝑀𝑆𝐷(𝑛,𝑞),𝑟𝑒𝑓
  (B3) 

with the mean squared deviation (MSD) for the observation and forecast fractions 640 
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𝑀𝑆𝐷(𝑛,𝑞) =
1

𝑁
∑ [𝐹𝑂,(𝑛,𝑞),𝑖−𝐹𝑀,(𝑛,𝑞),𝑖]

2𝑁
𝑖=1   (B4) 

and the total number of verification grid points N. The reference MSD 

𝑀𝑆𝐷(𝑛,𝑞),𝑟𝑒𝑓 =
1

𝑁
∑ 𝐹𝑂,(𝑛,𝑞)𝑖

2 + 𝐹𝑀,(𝑛,𝑞)𝑖
2𝑁

𝑖=1   (B5) 

represents the largest possible MSD from the observation and forecast fractions. The FSS 

shows values between zero and one with the higher values the better. In this paper, n is chosen 645 

to be five corresponding to a 15 km window. 

Appendix C: Brier Skill Score (BSS) 

The Brier Score (BS; Wilks, 2019) is a measure for the accuracy of probabilistic forecasts and 

takes the forecast ensemble into account via 

𝐵𝑆(𝑞) =
1

𝑁
∑ [𝑝(𝑞),𝑖 − 𝐼𝑂,(𝑞),𝑖]

2𝑁
𝑖=1   (C1) 650 

with 𝑝(𝑞),𝑖 the fraction of ensemble members within the ensemble exceeding the threshold 𝑞 at 

the ith verification grid point. The Brier Skill Score BSS for a threshold 𝑞 is then calculated as 

𝐵𝑆𝑆(𝑞) = 1 −
𝐵𝑆

𝐵𝑆𝑟𝑒𝑓
  (C2) 

with 𝐵𝑆𝑟𝑒𝑓 the Brier score of a reference ensemble forecast (here forecasts resulting from 

configuration CNV). The BSS shows positive values if the probabilistic QPF fits the 655 

observations better than the reference QPF and vice versa. 

Appendix D: Frequency Bias (FBI) 

The Frequency Bias (FBI)  

 𝐹𝐵𝐼(𝑞) =
𝑎(𝑞)+𝑏(𝑞)

𝑎(𝑞)+𝑐(𝑞)
 (D1) 

with 𝑎(𝑞) the total number of verification grid points that exceed threshold 𝑞 in 𝑃𝑂 and 𝑃𝑀, 𝑏(𝑞) 660 

the total number of points where 𝑞 is exceeded in 𝑃𝑀 but not in 𝑃𝑂, and 𝑐(𝑞) the total number 

of points for which 𝑞 is not exceeded in 𝑃𝑀 but in 𝑃𝑂. The FBI shows values below/above one 

in the case of under/overforecasted number of threshold exceedances.  
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Figure 1: German polarimetric C-band radar network operated by DWD. Crosses indicate locations of 
radar stations in Emden (EMD), Boostedt (BOO), Rostock (ROS), Hannover (HNR), Ummendorf (UMD), 
Prötzel (PRO), Essen (ESS), Flechtdorf (FLD), Dresden (DRS), Neuhaus (NEU), Neuheilenbach (NHB), 
Offenthal (OFT), Eisberg (EIS), Türkheim (TUR), Isen (ISN), Memmingen (MEM), and Feldberg (FBG), 
circles indicate approximate ranges of 150 km around radars; blue color indicates polarimetric and red 
color indicates non-polarimetric radars. 
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Figure 2: Visualization of the superobbing process from (a) a PPI of estimated LWC (Eq. (2)) below and 
IWC (Eq. (3)) above the melting layer (approximate upper and lower boundaries of the melting layer 
indicated by violet rings) at 1.5 degrees of the DWD radar NHB (see Fig. 1) for the stratiform precipitation 
case S2021 at 14 July 2021 16 UTC to (b) the corresponding field of superobbed (with the pre-selected 
settings LS = 10 km, LL = -2.3, and MV = 3) log(LWC) and log(IWC) (colored dots) and superobbed 
reflectivity Z (grey squares), where no LWC/IWC estimates are available (e.g., within the melting layer). 

Figure 3: Exceedances of hourly rain accumulation thresholds 0.5 (black curves), 1.0 (green), 2.0 (blue), 
and 4.0 mm h-1 (yellow) in the RADOLAN data (hourly accumulations) for the rainfall cases (a) C2017, 
(b) S2017, and (c) S2021 as percentages of the total number of threshold exceedances in all three 
rainfall cases and thresholds considered. The fractions are used to determine weights for calculations 
of weighted medians of FSS and BSS (e.g., in Fig. 4), and for the calculation of the univariate measure 
JQS (see Eq. (5) in Sect. 4.4). 
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Figure 4: Weighted medians of differences in first-guess deterministic FSS (first and third panel rows) 
and BSS (second and fourth panel rows) between the CNV+LWC/Z (left block) or CNV+IWC/Z (right 
block) configurations with different sampled DAP settings (S1-01 to S1-12 and S2-01 to S2-10 in 
Table 2) and the CNV+Z configuration for accumulation thresholds 0.5, 1.0, 2.0, and 4.0 mm h-1 and the 
three rainfall periods considered (three left columns within each block). The right most column in each 
block shows the weighted median over all cases considered. Weights are determined by threshold 
exceedances in the RADOLAN data (see Fig. 3). Green color indicates improvements compared to the 
CNV+Z configuration, grey to dark purple color indicates degradations. 
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Figure 5: (a) Comparison of the investigated DAP values for LH, LV, OE, LS, LL, and MV (Table 1) in 
terms of the univariate measure JQSv (see Eq. (5) in Sect. 4.4) for the LWC (blue bars) and IWC (orange 
bars) assimilation with the DAP settings from the first DAP settings (S1-01 to S1-12 in Table 2). In (b), 
all 22 DAP settings (S1-01 to S1-12 and S2-01 to S2-10 in Table 2) plus the pre-selected DAP setting 
(setting S-pre in Table 1) are compared with each other in terms of the univariate measure JQSc (see 
Eq. (5) in Sect. 4.4) for the LWC (black bars) and IWC (red bars) assimilation considering all rainfall 
cases together. Panels (c), (d), and (e) are like panel (b), but with the JQSc calculated for the individual 
rainfall cases C2017, S2017, and S2021, respectively. 
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Figure 6: Time series of the difference in first-guess deterministic FSS and BSS for a threshold of 
0.5 mm h-1 between the CNV+LWC/Z (left panel column) or CNV+IWC/Z (right panel column) 
configurations and the CNV+Z configuration using the found best-performing DAP settings for LWC and 
IWC (S2-06 and S1-02, see Table 2) for the precipitation cases (a)-(d) C2017, (e)-(h) S2017, and (i)-(l) 
S2021. Green shading indicates improvements with respect to CNV+Z, grey shading indicates 
deteriorations.  
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Figure 7: Comparison of different radar data set configurations in terms of the univariate measure JQSc 
(see Eq. (5) in Sect. 4.4). Configurations assimilating LWC and/or IWC with the found best DAP settings 
(S2-06 and S1-02 in Table 2) (a) instead of Z where possible (alternative Z assimilation) in configurations 
CNV+LWC/Z, CNV+IWC/Z, and CNV+[LWC+IWC]/Z (lower, middle, and upper bars), and (b) together 
with Z (parallel Z assimilation) in configurations CNV+LWC+Z, CNV+IWC+Z, and CNV+LWC+IWC+Z 
(lower, middle, and upper bars) are compared. Black bars indicate the JQSc calculated over all three 
rainfall cases, and blue, orange, and green bars indicate the JQSc calculated over the individual cases 
C2017, S2017, and S2021, respectively. 
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Figure 8: Vertical profiles of differences in standard deviations (SD) with respect to the CNV 
configuration (middle column) and of mean bias deviations (MBD; right column) of first-guesses of 
temperature (upper row), relative humidity (middle row), and u-wind (lower row) obtained from hourly 
assimilation cycles with the assimilation configurations CNV (black dotted), CNV+Z (black solid), 
CNV+LWC/Z (red), CNV+IWC/Z (yellow), and CNV+LWC+IWC+Z (blue curves) from conventional 
observations over Germany. The number of observations contributing to the SD and MBD calculations 
are shown in the left column (grey solid curves). All rainfall cases are considered and the found best 
DAP settings for LWC and IWC (S2-06 and S1-02 in Table 2) are used for the LWC and IWC 
assimilations.  
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Figure 9: Left panel column: time series of the deterministic FSS for a 0.5 mm h-1 threshold of nine-hour 
forecasts initiated every third hour from hourly assimilation cycles with the CNV and CNV+Z 
configurations (grey and black curves) as means over all precipitation cases (upper row), over only the 
2017 convective case C2017 (second row), over only 2017 stratiform case S2017 (third row), and over 
only the 2021 stratiform case S2021 (lower row). Middle column: corresponding deviations in mean 
deterministic FSS from the CNV+Z configuration of the CNV+LWC/Z (red curves), CNV+IWC/Z (yellow 
curves), and CNV+LWC+IWC+Z (blue curves) configurations using the found best DAP settings for 
LWC and IWC assimilations (S2-06 and S1-01 in Table 2). Right column: corresponding mean 
deterministic FBI. 
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Figure 10: Mean standard deviations (SD; upper panel row) and mean bias deviations (MBD; lower 
panel row) of forecasted 2m temperature (left panel column), 2m relative humidity (middle panel 
column), and 10m u-wind (right panel column) from conventional observations in Germany as functions 
of the forecast lead time. Means are calculated over nine-hour forecasts initiated every third hour from 
hourly assimilation cycles with the assimilation configurations CNV (grey curves), CNV+Z (black curves), 
CNV+LWC/Z (red curves), CNV+IWC/Z (yellow curves), and CNV+LWC+IWC+Z (blue curves) using 
the found best DAP settings for the LWC and IWC assimilations (S2-06 and S1-02 in Table 2), and 
taking all rainfall cases C2017, S2017, and S2021 into account. 
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DAP values LH (km) LV (ln(p)) OE LS (km) LL MV 

Pre-selected (S-pre) 16 h.d. 0.50 10 -2.30 3 

Modification 1 8 0.2 0.25 5 -1.15 25% 

Modification 2 32 0.5 1.00 20 -4.60 50% 

 

 

DAP settings LH (km) LV (ln(p)) OE LS (km) LL MV 

S1-01 16 h.d. 1.00 5 -2.30 50 % 

S1-02 8 0.5 0.25 10 -1.15 50 % 

S1-03 8 0.5 0.25 20 -1.15 3 

S1-04 32 0.5 0.50 5 -2.30 25 % 

S1-05 8 0.2 0.25 10 -4.60 50 % 

S1-06 16 h.d. 0.50 20 -1.15 25 % 

S1-07 32 0.2 1.00 5 -1.15 3 

S1-08 8 0.2 0.50 20 -2.30 3 

S1-09 32 0.5 0.50 5 -4.60 25 % 

S1-10 16 h.d. 1.00 10 -4.60 25 % 

S1-11 32 h.d. 1.00 20 -4.60 3 

S1-12 16 0.2 0.25 10 -2.30 50 % 

S2-01 16 0.2 1.00 20 -1.15 50 % 

S2-02 16 0.2 0.25 10 -2.30 3 

S2-03 8 h.d. 1.00 20 -1.15 3 

S2-04 16 0.2 1.00 20 -2.30 50 % 

S2-05 16 h.d. 0.25 10 -2.30 50 % 

S2-06 8 0.2 0.25 20 -1.15 3 

S2-07 8 0.2 1.00 10 -1.15 3 

S2-08 8 h.d. 0.25 10 -1.15 50 % 

S2-09 8 h.d. 1.00 20 -2.30 50 % 

S2-10 16 h.d. 0.25 10 -2.30 3 

 

 

 

 

Table 1: Pre-selected and modified (modifications 1 and 2) values for the DAPs LH (horizontal 
observation localization length-scale in km), LV (vertical localization length-scale in logarithm of 
pressure ln(p)), OE (observation error standard deviation for log(LWC) and log(IWC)), LS (superobbing 
window size in km) , LL (lower limit of the log(LWC) and log(IWC) data), and MV (minimum number of 
valid values for superobbing). 

Table 2: First and second near-random sample of DAP settings (S1-01 to S1-12 and S2-01 to S2-10) 
generated with Latin Hypercube Sampling from all the DAP values in Table 1 and with a reduced number 
of DAP values from Table 1 based on conisderation of the univariate measure JQSv (see Eq. (5) in 
Sect. 4.4) calculated with the first sample, respectively.  
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